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The field equations of linearized gravity can be obtained from the following Lagrangian: 
(Fierz and Pauli 1939):

The Euler–Lagrange field equations are:

Where : 

Using ‘harmonic condition’ ( ‘de Donder gauge’)                                        we can derive Einstein equations in the linear 
approximation:

linearized gravity 
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Gravitons from representations of the Poincaré group

Gravity is described by massless spin-2 particle called Graviton

Why massless?
• From the long-range nature of the gravitational interaction, it is clear that the graviton must have a small mass.
• Massive version of the Fierz–Pauli Lagrangian does not lead to linearized GR in the limit when the mass is set to zero.

Why spin-2?

According to Wigner, ‘particles’ are classified by irreducible representations of the
Poincaré group.

Poincaré transformation is described as:

According to Wigner’s theorem, Poincaré transformation induces a unitary transformation in the Hilbert space

Since this is a Lie group, it is advantageous to study group elements close to the identity,

strongest from gravitational effects on the scale of galaxy clusters, gives 
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This corresponds to the unitary transformation:

Gravitons from representations of the Poincaré group

where          and         denote the 10 Hermitian generators of the Poincaré group, which are 
the boost generators, the angular momentum and the four-momentum

Lie-algebra relations:

Since the components        of the four-momentum commute with each other, we choose their eigenstates

Application of the unitary operator then yields

Since One-particle states are classified according to their behaviour with respect to Poincaré transformations we need to find 
how these states transform under Lorentz transformations 
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According to the method of induced representations, it is sufficient to find the representations of the little group.
This group is characterized by the fact that it leaves a ‘standard’ vector 𝑘𝜇 invariant (within each
class of given𝑝2 ≤ 0 and given sign of 𝑝0 ). For positive 𝑝0 , one can distinguish the following two cases. 
• The first possibility is 𝑝2 = − 𝑚2 < 0. Here one can choose
𝑘𝜇 = (m, 0, 0, 0), and the little group is SO(3), since these are the only Lorentz trans-
formations that leave a particle with k = 0 at rest. 
• The second possibility is 𝑝2 = 0.
One chooses 𝑘𝜇 = (1, 0, 0, 1), and the little group is ISO(2), the invariance group of
Euclidean geometry (rotations and translations in two dimensions). 
Any 𝑝𝜇 within a given class can be obtained from the corresponding 𝑘𝜇 by a Lorentz transformation.

Gravitons from representations of the Poincaré group

Normalization:

For m = 0, the little group is ISO(2). This is the case of interest here. It turns out that the quantum-mechanical states 
are only distinguished by the eigenvalue of  𝐽3, the component of the angular momentum in the direction of motion

The eigenvalue σ is called the helicity
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Gravitons from representations of the Poincaré group

σ = ±1 characterizes the photon.

If a plane wave ϕ transforms as ϕ → 𝑒−𝑖ℎ𝜃under a rotation around the direction of  propagation, one calls h its helicity. 
And because weak gravitational waves in a flat background transform like: 

we associate the particle with σ = ±2 with the gravitational interaction and call it the graviton.

Since for a massless particle |σ| is called its spin, we recognize that the graviton has spin 2
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Quantization of the linear field theory

We can start with superposition of plane-wave solutions
and formally turn it into an operator

Where because of helicities ±2, 𝑓𝜇𝜈cannot be a true tensor with respect to Lorentz transformations 

In his paper Weinberg (1965) concluded that one can derive the equivalence principle (and thus GR if no other fields are present) 
from the Lorentz invariance of the spin-2 theory. No gauge invariance arguments are needed.
The gravitational mass mg is defined in this approach by the strength of interaction with a soft graviton hat is, a graviton with four-
momentum k → 0.

Amplitude for the emission 
of a single soft graviton
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Quantization of the linear field theory

From the Lorentz-invariance of the amplitude we can find that

where Mβα denotes the amplitude for the process without soft-graviton emission; α refers to the

ingoing and β to the outgoing particles ; 𝑔𝑛 denotes the coupling of the graviton to particle n and 𝑝𝑛 is the  four-momentum of 
the nth particle.

Consequently, the couplings 𝑔𝑛 must all be equal, and one can set

𝑔𝑛 ≡ 8πG Therefore, all low-energy particles with spin 2 and m= 0 couple to all forms of energy in an equal way.

Weinberg (1964) also showed that the effective gravitational mass 𝑚𝑔 is given by:

where, as in Section 𝑚𝑖 denotes the inertial mass, and E is the energy. 
• For E → 𝑚𝑖, this leads to the usual equivalence of inertial and gravitational mass.
• At the same time, one has 𝑚𝑔 = 2E for 𝑚𝑖 → 0.
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Following Weinberg (1972), one can calculate the transition rate from the 3d level to the 1s level in the hydrogen atom due to 
the emission of a graviton. One needs at least the 3d level, since Δl = 2 is needed for the emission of a spin-2 particle.

Quantization of the linear field theory

Which corresponds to a lifetime of

One starts from the classical formula for gravitational radiation and interprets it as the emission rate of gravitons with energy 
ℏω.

After the calculations we get:

Kiefer, Claus - Quantum gravity-Oxford University Press (2012)



The quantum-gravitational path integral, first formulated by Misner (1957), would be of the form

Path-integral quantization

Performing the Wick rotation one finds the following expression for the Euclidean gravitational action:

this action is unbounded, consider a conformal transformation of the metric, gμν → ෦gμν = Ω2 gμν. This yields: 

we recognize that the action can be made arbitrarily negative by taking into account large gradients of the conformal factor Ω.
This is known as the conformal-factor problem.

Euclidean path integrals are often used in quantum cosmology, being related to boundary conditions of the universe 
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The perturbative non-renormalizability

A major obstacle to the viability of perturbation theory is the non-renormalizability of quantum GR.

It turns out that the mass dimensionality (in units for which ℏ = c = 1) of the coupling constant for a given interaction determines 
its renormalizability. This dimensionality is given by a coefficient Δ, which is called the superficial degree of divergence and which 
must not be negative. It can be calculated from the formula:

where d is the number of derivatives;  𝑛𝑓 is the number of fields of type f;  𝑠𝑓 = 0, 1/2, 1, 0 

for scalars, fermions, massive vector fields, and photons and gravitons

For example, calculating Δ for standard QED interaction gives:

A theory is said to be renormalizable if these divergences can all be removed by a redefinition of a finite number of physical 
constants (masses, charges, etc.) 
A non-renormalizable theory thus needs an infinite number of parameters to be determined experimentally.
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In the background-field method to quantize gravity (DeWitt 1967), one expands the metric about an arbitrary curved 
background solution to the Einstein equations

The perturbative non-renormalizability

If one chooses a flat background space–time

one finds from the Einstein–Hilbert Lagrangian the Fierz–Pauli Lagrangian plus higher-order terms

These are infinitely many terms because the inverse of the metric, 𝑔μν, enters the Einstein–Hilbert Lagrangian

Let’s Considering the first interaction term 

We can find that is has negative mass dimension
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Effective action and Feynman rules

If we apply the general path integral  to the expansion                                            we find an integral over the quantum field 

After long calculations involving Grassmann path integral we get:

the final path integral can be written in the form:

Where:

Kiefer, Claus - Quantum gravity-Oxford University Press (2012)



(’t Hooft and Veltman 1974)

This vanishes if the background is a solution of the (vacuum) 
Einstein equations

The first line corresponds to the Fierz–Pauli Lagrangian while the 
second line describes the interaction with the background

Gauge-fixing part

The ghost part which is needed to guarantee the unitarity of 
the S-matrix

Effective action and Feynman rules
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In the case of a flat background, for which, for example, the propagator (in the harmonic gauge) is given by the 
expression:

The action leads to diagrams with at most one loop such as those depicted (the ‘one-loop approximation’) 
a) describes a graviton loop interacting with the background field. 
b) describes a ghost loop interacting with the background.

The pole for n = 2 arises because in two space–time dimensions, GR is a topological theory.

Effective action and Feynman rules
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quantum-gravitational correction term to the Newtonian potential

Genuine predictions can, be obtained from the action in the infrared limit. 
The first example is a quantum-gravitational correction term to the Newtonian potential, which was derived from linear 
quantum gravity by Bronstein (1936). 

After calculating the first correction term we get:

Although arising from a one-loop amplitude, the first correction term is in fact an effect of classical GR. 
It can be obtained from the Einstein–Infeld–Hoffmann equations, describing the approximate dynamics of a system of 
point-like masses due to their mutual gravitational interactions.
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Semiclassical Einstein equations

For a general quantum field ϕ (with possible components ϕ𝑖), the generating functional W[J] is defined by the path integral

In the case J = 0 one gets from the following semiclassical Einstein equations:

where J is an external current

If we introduce effective action:

we can eventually get the effective field equation up to one-loop order:
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After the renormalization we get following semiclassical Einstein equations:

Semiclassical Einstein equations

Where:
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