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linearized gravity

The field equations of linearized gravity can be obtained from the following Lagrangian:
(Fierz and Pauli 1939):
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Where: Juv — TMuv =+ f,uu

The Euler—Lagrange field equations are:
o o o .
uv,o  Jou,v  Jouv,u + f,,LW + my (f faa) — _167TGT/,LZ/

Using ‘harmonic condition’ ( ‘de Donder gauge’) fﬁy — y M we can derive Einstein equations in the linear
approximation:

Ofu = —167G ( — 77#1/ )

Kiefer, Claus - Quantum gravity-Oxford University Press (2012)



Gravitons from representations of the Poincaré group

Gravity is described by massless spin-2 particle called Graviton

Why massless?
* From the long-range nature of the gravitational interaction, it is clear that the graviton must have a small mass.
* Massive version of the Fierz—Pauli Lagrangian does not lead to linearized GR in the limit when the mass is set to zero.

strongest from gravitational effects on the scale of galaxy clusters, gives My < 1072 eV

Why spin-27?

According to Wigner, ‘particles’ are classified by irreducible representations of the
Poincaré group.

Poincaré transformation is described as: CC/'u — A'LLVZEV —+ CL'u,

According to Wigner’s theorem, Poincaré transformation induces a unitary transformation in the Hilbert space
¢ — U(A7 a)@b

Since this is a Lie group, it is advantageous to study group elements close to the identity,
o — S§H H Ho__ M
A =08 +wh,, a" =€,
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Gravitons from representations of the Poincaré group

1
This corresponds to the unitary transformation: U(l + w, e) — 1+ _Z'w'LWJ/JV _ ieﬂP“ 4

where JHYand P# denote the 10 Hermitian generators of the Poincaré group, which are
the boost generators, the angular momentum and the four-momentum

Lie-algebra relations: |PY, PP =0,
i[J’W, JAP] = nvkjup _ nu/\JVp _ npuJM + anJM7
i[P“, JAP] = nuApp _ nuppA

Since the components P’%f the four-momentum commute with each other, we choose their eigenstates

Py o = p“"p o

_iph
Application of the unitary operator then yields U(l, a)wp,g =e P wp,O'

Since One-particle states are classified according to their behaviour with respect to Poincaré transformations we need to find
how these states transform under Lorentz transformations
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Gravitons from representations of the Poincaré group

According to the method of induced representations, it is sufficient to find the representations of the little group.
This group is characterized by the fact that it leaves a ‘standard’ vector k* invariant (within each

class of givenp? < 0 and given sign of p° ). For positive p® , one can distinguish the following two cases.

e The first possibility is p? = - m? < 0. Here one can choose

k" =(m, 0, 0, 0), and the little group is SO(3), since these are the only Lorentz trans-

formations that leave a particle with k = 0 at rest.

 The second possibility is p? = 0.

One chooses k* =(1, 0, 0, 1), and the little group is ISO(2), the invariance group of

Euclidean geometry (rotations and translations in two dimensions).

Any p* within a given class can be obtained from the corresponding k* by a Lorentz transformation.

Normalization: <wp’7o'/7 wp,o'> — 500’5(17 T p/)

For m = 0, the little group is ISO(2). This is the case of interest here. It turns out that the quantum-mechanical states
are only distinguished by the eigenvalue of /3, the component of the angular momentum in the direction of motion

J3wk,a — O-wk,a

The eigenvalue o is called the helicity

U(A7 O)wp,a — Neiae(Am)wAp,a
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Gravitons from representations of the Poincaré group

o = 1 characterizes the photon.

If a plane wave @ transforms as ¢ = e ~"@under a rotation around the direction of propagation, one calls h its helicity.
And because weak gravitational waves in a flat background transform like:

—210 210

e =e “"egr, e =eer

we associate the particle with o = £2 with the gravitational interaction and call it the graviton.

Since for a massless particle | o] is called its spin, we recognize that the graviton has spin 2
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Quantization of the linear field theory

We can start with superposition of plane-wave solutions ~ f,,, = eWeikx + ezye_ikx

and formally turn it into an operator

d3k ‘ * —i1kx
fula) = 3 gyt [0k, 0 (k. 0)e™ +al (k. e, (k. )]
o==2

Where because of helicities +2, f,, cannot be a true tensor with respect to Lorentz transformations

fuv = ASAL fop — Oucy — By,

In his paper Weinberg (1965) concluded that one can derive the equivalence principle (and thus GR if no other fields are present)

from the Lorentz invariance of the spin-2 theory. No gauge invariance arguments are needed.
The gravitational mass mg is defined in this approach by the strength of interaction with a soft graviton hat is, a graviton with four-

momentum k = 0.

A .

AnAnannnane Soft graviton

Amplitude for the emission v

of a single soft graviton M}{X‘/U{) _ Mﬁa

-k
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Quantization of the linear field theory

where MBa denotes the amplitude for the process without soft-graviton emission; a refers to the

ingoing and B to the outgoing particles ; g,, denotes the coupling of the graviton to particle n and p,, is the four-momentum of
the nth particle.

From the Lorentz-invariance of the amplitude we can find that E nngnp;; — ()
n

Consequently, the couplings g,, must all be equal, and one can set
Jn =V8nG Therefore, all low-energy particles with spin 2 and m= 0 couple to all forms of energy in an equal way.

Weinberg (1964) also showed that the effective gravitational mass m, is given by:

2
m;

E

mg = 28 —

where, as in Section m; denotes the inertial mass, and E is the energy.
* For E & m;, this leads to the usual equivalence of inertial and gravitational mass.
* At the same time, one has m, = 2E form; - 0.
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Quantization of the linear field theory

Following Weinberg (1972), one can calculate the transition rate from the 3d level to the 1s level in the hydrogen atom due to
the emission of a graviton. One needs at least the 3d level, since Al = 2 is needed for the emission of a spin-2 particle.

P
- hw
One starts from the classical formula for gravitational radiation and interprets it as the emission rate of gravitons with energy
hw.

Iy

Gm3eca® 40 —1
After the calculations we get: Iy = 36042 ~5.7x107"s
~ 31
Which corresponds to a lifetime of T4 ~ 5.6 X 10°" years
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Path-integral quantization

The guantum-gravitational path integral, first formulated by Misner (1957), would be of the form

_ / Dy ()€ 100 (@)

Performing the Wick rotation one finds the following expression for the Euclidean gravitational action:

Selg] =

/ d*z\/g(R — 2A) = ! d%\/ﬁK,

167TG 871G

this action is unbounded, consider a conformal transformation of the metric, gy - g’[[v = ? guv- This yields:

1
(G

Selgl = — PrvVhOPK,

d* 0? QO —2A%) —
167TG/M TR + 69, )

we recognize that the action can be made arbitrarily negative by taking into account large gradients of the conformal factor Q.
This is known as the conformal-factor problem.

Euclidean path integrals are often used in quantum cosmology, being related to boundary conditions of the universe
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The perturbative non-renormalizability

A major obstacle to the viability of perturbation theory is the non-renormalizability of quantum GR.

It turns out that the mass dimensionality (in units for which A = ¢ = 1) of the coupling constant for a given interaction determines

its renormalizability. This dimensionality is given by a coefficient A, which is called the superficial degree of divergence and which
must not be negative. It can be calculated from the formula:

A::4—d—2nf(sf—|—1)
J

where d is the number of derivatives; ny is the number of fields of type f; s7 =0, 1/2,1,0
for scalars, fermions, massive vector fields, and photons and gravitons

For example, calculating A for standard QED interaction —ie@Aufy“@b gives:
3 3
4—-0——=-— = — 1=0
2 2

A theory is said to be renormalizable if these divergences can all be removed by a redefinition of a finite number of physical
constants (masses, charges, etc.)

A non-renormalizable theory thus needs an infinite number of parameters to be determined experimentally.
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The perturbative non-renormalizability

In the background-field method to quantize gravity (DeWitt 1967), one expands the metric about an arbitrary curved
background solution to the Einstein equations

g/“/ — guy _|_ V BZWGfHV
If one chooses a flat background space—time EW/ — 77/w
one finds from the Einstein—Hilbert Lagrangian the Fierz—Pauli Lagrangian plus higher-order terms

v32rGf(Of)(Of) + -+ (V32nG f) (0f)(Of) + -

These are infinitely many terms because the inverse of the metric, gHV, enters the Einstein—Hilbert Lagrangian X v/ —gR,,g""
Let’s Considering the first interaction term VGf(Of)(Of)

We can find that is has negative mass dimension A=4—2— 3(0 —+ 1) = —1
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Effective action and Feynman rules

If we apply the general path integral to the expansion Juw = §W TV 327TGf;w we find an integral over the quantum field f..

After long calculations involving Grassmann path integral we get:

7 /Df AG[f] exp (z’S[f] —7:4—1f d*x G“Ga)

the final path integral can be written in the form:

Z — /’Df Dna DT]:’; eistot [fﬂ?a?]

Where: Seot|f,1,7] = S[f,g] — 4_15 d*x G*[f,9]Guf, 7]
+ [ dlon; @A (f.g)()ns(@

= / d*x (Ly+ Ly + Lghost)
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Effective action and Feynman rules

R R
Ly, =+—g 6 — \/—§16 G + Lél) + Lg2> + - ("t Hooft and Veltman 1974)
7 T
LEJU _ :];;WG @WE B QEW) 'é'ihnlzt\;zia:lzzﬁzgc;c:: background is a solution of the (vacuum)
/393
1 S . The first | ds to the Fierz—Pauli L ian while th
L(Q) __ N 21 I S 4o fe} ‘ e Tirst line corresponds to the Fierz—Pauli Lagranglan while the
9 2 fW’af 2 f’af +7 fO‘B’B second line describes the interaction with the background
: — (1 1 _
— "7 fuap + R (§fwf“” - Zf?) + Ry (£ = 212 fua)

— 1 1. Y
Lot =+/—7 (f/u/;v _ 5]0;“) (fup;p _ §f“> . Gauge-fixing part

Lghost = /_gn: (770“;0; _ R/wny) . :’::Sg::)::r?xart which is needed to guarantee the unitarity of

R 1 f = o5 —
_ 4. /= _ - py rof3 g _ "R — (g _ RY 3
Shot /d T\ =7 <167TG 5 fur Do f0 + 327TG/ 99" R — 2R, +1,(G"2 - R ), + O(f )),
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Effective action and Feynman rules

The action leads to diagrams with at most one loop such as those depicted (the ‘one-loop approximation’)
a) describes a graviton loop interacting with the background field.
b) describes a ghost loop interacting with the background.

(a) (b)

In the case of a flat background, for which, for example, the propagator (in the harmonic gauge) is given by the
expression:

1 2
DHY — N 4 Koy
af 2(k'2 . ’1,6) (77@775 + 7757704 n — 9

" Nag)-

The pole for n = 2 arises because in two space—time dimensions, GR is a topological theory.
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guantum-gravitational correction term to the Newtonian potential

Genuine predictions can, be obtained from the action in the infrared limit.
The first example is a quantum-gravitational correction term to the Newtonian potential, which was derived from linear
guantum gravity by Bronstein (1936).

Gm1m2
Vir)=—
r
After calculating the first correction term we get:
Gm1m2 3G(m1 -+ m2> 4 1 2
Vir)=———=11 O(G
(r) r ( + rc2 + 10rGh r?c3 +0(&)

Although arising from a one-loop amplitude, the first correction term is in fact an effect of classical GR.
It can be obtained from the Einstein—Infeld-Hoffmann equations, describing the approximate dynamics of a system of
point-like masses due to their mutual gravitational interactions.
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Semiclassical Einstein equations

For a general quantum field ¢ (with possible components ¢;), the generating functional W[J] is defined by the path integral

(out,0)in,0)J =: Z[J] =: Wl = /D(b iS[0]+i T, 0"
where J is an external current

If we introduce effective action:  T'[{¢)] = W[J] — /d4m J(z){p(x))

we can eventually get the effective field equation up to one-loop order:

5—3 — 1 nmk _ _ J(p
5o hzgrns 7@)

05 0S5, N/ — 1 \/ —
EH n g (R,LW - 79TW>

5(gu0 (1)) 8(gun(z)) 167G 5 Il =

In the case J = 0 one gets from the following semiclassical Einstein equations:

1
Ry — §g/u/R = 81G((Tyw) + (tuv))
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Semiclassical Einstein equations

After the renormalization we get following semiclassical Einstein equations:

1
RMV _ _guVR + Agﬂ'/ + ClHA(LB + CZHA(L?/) — 87TG(<TMV>ren + <tuV>ren)

2
Where: 1 5 1
H/(J}/) — N (/ d*x —q RQ) = 2R, — 2¢9,,UR — §gWR2 +2RR,,,
- L 0 d*z\/—gR.3RY | = 2R _—2R —lg OR+2R*R —lg RosRP
pv V=g 6ghv af piva pr T 5 I pttar ™o Guvitafp
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Box 18.1

DERIVATIONS OF GENERAL RELATIVITY FROM GEOMETRIC

VIEWPOINT AND FROM SPIN-TWO VIEWPOINT, COMPARED
AND CONTRASTED

Einstein
derivation

Spin-2
derivation

Nature of primordial spacetime
geometry?

Topology (multiple connected-
ness) of spacetime?

Vision of physics?

Starting points for this deri-
vation of general relativity

Resulting equations

Resulting assessment of the
spacetime geomeltry from which
derivation started

View about the greatest single
crisis of physics to emerge
from these equations: complete
gravitational collapse

Not primordial; geometry is a
dynamic participant in physics

Laws of physics are local;
they do not specify the
topology

Dynamic geometry is the
“master field” of physics

1. Equivalence principle
(world lines of photons and
test particles are geo-
desics of the spacetime
geometry)

2. That tensorial conserved
quantity which is derived
from the curvature (Cartan’s
moment of rotation) is to
be 1dentified with the tensor
of stress-momentum-energy
(see Chapter I5).

Einstein's ficld equations

Fundamental dynamic partici-
pant in physics

Central to understanding the
nature of matter and the
universe

“God-given™ flat Lorentz
spacetime manifold

Simply connected Euclidean

topology

This field. that field, and
the other field all execute
their dynamics in a flat-
spacetime manifold

1. Begin with field of spin
two and zero rest mass in
flat spacetime.

2. Stress-energy tensor built
from this field serves as a
source for this field.

Einstein’s field equations

None. Resulting theory eradi-
cales original flat geometry
from all equations, showing it
to be unobservable

Unimportant or at most
peripheral
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