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What causes the problem?

* While computing Feynman diagrams for different processes, we encounter a
problem — Most loop amplitudes are infinite.

* QFT pioneers spent years struggling with infinities until the procedure of
renormalization was developed.

* Regularization and renormalization procedures are used to extract meaningful
physical results from calculations that seem to misbehave.
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Regularization — introducing a Renormalization — absorbing
high momentum cut-off to make extracted infinities into
integrals finite and regularize the  counterterms — re-scaling the
theory. theory to get meaningful results.

Literally cutting off ignorance 2



Example: the self-energy of the electron
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From classical ED we know: U = —e<p = ;—R R=0 = U->o

This is the limit for classical theory, it is time to take quantum effects into account.

QFT view:
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The one-loop correction to the electron propagator >
p p

* Atlarge k, this goes [ d4k “ which is linearly divergent.

 This type of divergence is called UV (ultra-violet) divergence and it corresponds to
the infinities that arise when calculations involve integrating over large momentum

values.



Closer look: Scattering matrix

Interaction picture:

Let’s consider the thgor%f of a real scalar field in n = 4 dimensions. It turns out that only
interaction term which leads to a renormalizable theory must be quartic in the fields.

L =Ly+ L
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L = -(0u9)°——¢*— 19"

S=Texp —ifH,((p(x))dx = Texp +iJL,(<p(x))dx

All information about the scattering (interaction) process is encoded in S-matrix. Its elements describe the
transition amplitudes and their module square gives a measurable quantity — scattering cross section.

A(t1)B(t;) if t1>t

T — time ordering: T(A(H),B(tz)) = {B(tz)A(tl) if t,>t



Expanding the S-matrix:

1
S=1+ fT{i/l o*(x)}dx + Ef T{(iN?p*(x)p*(y)}dxdy + ...

Ist order term according to W1ck s theorem:
51(x) = iAN{P* (0} + iAp (P CON{9? ()} + iA(P (1) ())?
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These are corresponding diagrams that we encounter in 1st order. Every
closed loop corresponds to couplings.




2nd order diagrams ~A?
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No loops 1 loop 2 loops

Important remarks:

* Divergent integrals are always related to loop diagrams. Every loop corresponds
to the integration in momentum space.

* Underlying reason: propagators are defined with chronological (T) ordering, but
chronological ordering is not well defined when its time arguments coincide.



1st order divergent diagrams
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(p(x)cp(x) = —iD (O) — lf(2n)4 k2-

generally, Feynman propagator - cp(x)cp(O) = —iD_.(x) contains different kinds
of singularities, in particular, quadratic and logarithmic.
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We solve this problem using Pauli—Villars Re gularization
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Introducing new mass terms and constants will help us get rid of
infinities later.



Regularizing iD,.(0):

We are going to need two masses and two constants:

1 C C d*k
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With these conditions we have:
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Later on parametrization:
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For the explicit calculation of the integral we use:
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Finally we get...

regD:(0) =

o 2 2 2
il > {Uln(a) L lnM—2 + lna}
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From this we directly see quadratic and logarithmic divergences.

1-0 m?2

Finally, putting this into the matrix:

Am? (ol M? M?
S = 1+i)le{<p4(x)}dx+ i {G n(o)

ez 1= 2 +lnﬁ+lna}fN{cpz(x)}dx+0()lz)
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Divergent terms have the same
operator structure as our initial,
“unregularized” Lagrangian.



2nd order divergent terms:

S ~ JF S, (x,y)dxdy

From second order would contribute:
/12 ln f N{p*(x)}dx —iA*M?* [ N{p*(x)}dx +
+1/121n f N (0,¢)°dx

In higher terms the tendency is the same: structure of an initial
lagrangian is kept, which leads us to re-scaling our theory and take
regularized values also into account.

Our interaction term directly could have been:
o 2y M i 2 2, 121 M i 2
L' = ¢* +E)L ln—ch —ilcp“+ 1 ln—z(aucp)
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Counter-terms




Re-scaling:

New, modified lagrangian:
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, , , Z1 Zlm
L'= L+ L= 3(%@)2— > @* — Az, *
Renormalization constants:
2
_ 2 .
Z1 = 14+ 21 lnm,

zim'? = m? + 2A°M?
9 2
_ 2
/122 = A1+ EA lnﬁ
Defining scalar field: ¢’ = /z1¢

1 m'?
L' =2 0up) ——9™ = Vo™
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Where V=22

Z1

@',m’,A" renormalized field, mass and coupling constant
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THANK YOU
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