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What causes the problem?
• While computing Feynman diagrams for different processes, we encounter a 

problem – Most loop amplitudes are infinite. 

• QFT pioneers spent years struggling with infinities until the procedure of 
renormalization was developed. 

• Regularization and renormalization procedures are used to extract meaningful 
physical results from calculations that seem to misbehave. 
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Regularization – introducing a 
high momentum cut-off to make 
integrals finite and regularize the 
theory.

Renormalization – absorbing 
extracted infinities into 
counterterms – re-scaling the 
theory to get meaningful results.

Literally cutting off ignorance 



Example: the self-energy of the electron

From classical ED we know:     𝑈 =
1

2
𝑒𝜑 =

𝑒2

2𝑅
 ;       𝑅 = 0 ⇒  𝑈 → ∞
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This is the limit for classical theory, it is time to take quantum effects into account.

𝑖𝑀 =  න
𝑑4𝑘

2𝜋 4
ത𝑢 −𝑖𝑒𝛾𝜇

−𝑖𝑔𝜇𝜈

𝑝 − 𝑘 2

𝑖 𝛾𝜇𝑘𝜇  − 𝑚

𝑘2 − 𝑚2
−𝑖𝑒𝛾𝜈 𝑢

QFT view:

The one-loop correction to the electron propagator

• At large k, this goes ׬ 𝑑4𝑘
𝛾𝜇𝑘𝜇

𝑘4  which is linearly divergent.

• This type of divergence is called UV (ultra-violet) divergence and it corresponds to 
the infinities that arise when calculations involve integrating over large momentum 
values. 



Closer look: Scattering matrix

Interaction picture: 
Let’s consider the theory of a real scalar field in n = 4 dimensions. It turns out that only 
interaction term which leads to a renormalizable theory must be quartic in the fields. 

 ℒ = ℒ0 + ℒ𝐼

 ℒ =
1

2
(𝜕𝜇𝜑)2−

𝑚2

2
𝜑2 − 𝜆𝜑4

𝑆 = 𝑇 𝑒𝑥𝑝 −𝑖 න 𝐻𝐼 𝜑 𝑥 𝑑𝑥 = 𝑇𝑒𝑥𝑝 +𝑖 න ℒ𝐼 𝜑 𝑥 𝑑𝑥
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T – time ordering:     𝑇 𝐴 𝑡1 , 𝐵 𝑡2 =  ቊ
𝐴 𝑡1 𝐵 𝑡2  𝑖𝑓 𝑡1 > 𝑡2

𝐵 𝑡2 𝐴 𝑡1  𝑖𝑓 𝑡2 > 𝑡1

All information about the scattering (interaction) process is encoded in S-matrix. Its elements describe the 
transition amplitudes and their module square gives a measurable quantity – scattering cross section. 



Expanding the S-matrix:

𝑆 = 1 +  න 𝑇 𝑖𝜆 𝜑4(𝑥) 𝑑𝑥 +
1

2
න 𝑇 𝑖𝜆 2𝜑4(𝑥)𝜑4(𝑦) 𝑑𝑥𝑑𝑦 + …

1st order term according to Wick’s theorem:

 𝑆1 𝑥 = 𝑖𝜆𝑁 𝜑4(𝑥) + 𝑖𝜆𝜑 𝑥 𝜑 𝑥 𝑁 𝜑2(𝑥) + 𝑖𝜆(𝜑 𝑥 𝜑 𝑥 )2

These are corresponding diagrams that we encounter in 1st order. Every 
closed loop corresponds to couplings. 5



2nd order diagrams ~𝜆2
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Important remarks:
• Divergent integrals are always related to loop diagrams. Every loop corresponds 

to the integration in momentum space.
• Underlying reason: propagators are defined with chronological (T) ordering, but 

chronological ordering is not well defined when its time arguments coincide.

No loops                                                     1 loop                                    2 loops



1st order divergent diagrams

𝜑 𝑥 𝜑 𝑥 = −𝑖𝐷𝑐 0 = 𝑖 ׬
𝑑4𝑘

2𝜋 4

1

𝑘2−𝑚2+𝑖𝜀
׬ ~ 

𝑑4𝑘

𝑘2  ~ 𝑘2 → ∞

 generally, Feynman propagator - 𝜑 𝑥 𝜑 0 = −𝑖𝐷𝑐 𝑥  contains different kinds 
of singularities, in particular, quadratic and logarithmic. 

We solve this problem using Pauli-Villars Regularization 
1

𝑘2−𝑚2+𝑖𝜀
 −−→

1

𝑘2−𝑚2+𝑖𝜀
 −  σ𝑛

𝐶𝑛

𝑘2−𝑀𝑛
2+𝑖𝜀

Introducing new mass terms and constants will help us get rid of 
infinities later.
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𝑟𝑒𝑔Δ(𝑘)



Regularizing 𝑖𝐷𝑐 0 : 

We are going to need two masses and two constants:

 𝑟𝑒𝑔𝐷𝑐 0 = )׬ −
1

𝑘2−𝑚2+𝑖𝜀
−

𝐶1

𝑘2−𝑀1
2+𝑖𝜀

−
𝐶2

𝑘2−𝑀2
2+𝑖𝜀

)
𝑑4𝑘

2𝜋 4

σ𝑛 𝐶𝑛 = 1 ; σ𝑛 𝐶𝑛𝑀𝑛
2 = 𝑚2

With these conditions we have:

𝐶1 =
𝑚2−𝑀2

2

𝑀1
2−𝑀2

2     and    𝐶2 =
𝑀2

2−𝑚2

𝑀1
2−𝑀2

2

Later on parametrization:

𝑀1
2 = 𝑀2;  𝑀2

2 = 𝜎 𝑀2;  𝑀 → ∞ 𝐶1 =
−𝜎

1−𝜎
 ; 𝐶2 =

1

1−𝜎
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For the explicit calculation of the integral we use:
1

𝑘2−𝑚2+𝑖𝜀
= 0׬ 

∞
𝑒𝑖(𝑘2−𝑚2+𝑖𝜀)𝛼𝑑𝛼



Finally we get…

𝑟𝑒𝑔𝐷𝑐 0 =
𝑖𝑚2

16𝜋2

𝜎ln(𝜎)

1−𝜎

𝑀2

𝑚2 + 𝑙𝑛
𝑀2

𝑚2 + 𝑙𝑛𝜎

From this we directly see quadratic and logarithmic divergences.

Finally, putting this into the matrix:

𝑆 = 1 + 𝑖𝜆 න 𝑁 𝜑4(𝑥) 𝑑𝑥 +
𝑖𝜆𝑚2

16𝜋2

𝜎ln(𝜎)

1 − 𝜎

𝑀2

𝑚2
+ 𝑙𝑛

𝑀2

𝑚2
+ 𝑙𝑛𝜎 න 𝑁 𝜑2(𝑥) 𝑑𝑥 + 𝑂(𝜆2)
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Divergent terms have the same 
operator structure as our initial, 
“unregularized” Lagrangian.



2nd order divergent terms:
𝑆 ~ න 𝑆2 𝑥, 𝑦 𝑑𝑥𝑑𝑦 

From second order would contribute:

9𝑖

4𝜋
𝜆2𝑙𝑛

𝑀2

𝑚2 ׬ 𝑁 𝜑4(𝑥) 𝑑𝑥 − i𝜆2𝑀2 ׬ 𝑁 𝜑2 𝑥 𝑑𝑥 + 

+i𝜆2𝑙𝑛
𝑀2

𝑚2 ׬ 𝑁 (𝜕𝜇𝜑)2𝑑𝑥
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In higher terms the tendency is the same:  structure of an initial 
lagrangian is kept, which leads us to re-scaling our theory and take 
regularized values also into account.

Our interaction term directly could have been:

ℒ𝐼
′ = 𝜆𝜑4 +

9𝑖

4𝜋
𝜆2𝑙𝑛

𝑀2

𝑚2 𝜑4 − i𝜆2𝜑2 + 𝜆2𝑙𝑛
𝑀2

𝑚2 (𝜕𝜇𝜑)2

Counter-terms



Re-scaling:
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New, modified lagrangian:

ℒ′ =  ℒ′
0 + ℒ′

𝐼 =
𝑧1

2
(𝜕𝜇𝜑)2−

𝑧1𝑚′2

2
𝜑2 − 𝜆𝑧2𝜑4

Renormalization constants:

𝑧1 = 1 + 2𝜆2𝑙𝑛
𝑀2

𝑚2
;

𝑧1𝑚′2 =  𝑚2 + 2𝜆2𝑀2

𝜆𝑧2 = 𝜆 +
9

4𝜋
𝜆2𝑙𝑛

𝑀2

𝑚2

Defining scalar field: 𝜑′ = 𝑧1𝜑

ℒ′ =
1

2
(𝜕𝜇𝜑′)2−

𝑚′2

2
𝜑′2 − 𝜆′𝜑′4

Where 𝜆′ =
𝑧2

𝑧1
𝜆

𝜑′, 𝑚′, 𝜆′ renormalized field, mass and coupling constant
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THANK YOU
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